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Abstract

Recent work has shown that the many-body expansion of the interaction energy can effectively

be used to develop analytical representations of global potential energy surfaces (PESs) for water.

In this study, the role of short- and long-range contributions at different orders is investigated

by analyzing water potentials that treat the leading terms of the many-body expansion through

implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) repre-

sentations. It is found that explicit short-range representations of 2-body and 3-body interactions

along with a physically correct integration of short- and long-range contributions are necessary for

an accurate representation of the water interactions from the gas to the condensed phase. Simi-

larly, a complete many-body representation of the dipole moment surface is found to be crucial to

reproducing the correct intensities of the infrared spectrum of liquid water.
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It is known that the global potential energy surface (PES) of a system containing N

interacting water molecules can be formally expressed in terms of the many-body expansion

of the interaction energy as a sum over n-body terms with 1 ≤ n ≤ N ,[1]

VN(x1, . . . , xN) =
∑

a

V (1B)(xa) +
∑
a>b

V (2B)(xa, xb)

+
∑

a>b>c

V (3B)(xa, xb, xc) + · · ·+ V (NB)(x1, . . . , xN). (1)

Here, xi collectively denotes the coordinates of all atoms in the i-th water molecule, V (1B)

is the one-body potential describing the energy required to deform an individual water

molecule from its equilibrium geometry, and all higher n-body interactions, V (nB), are defined

recursively through

V (nB)(x1, . . . , xn) = Vn(x1, . . . , xn)−
∑

a

V (1B)(xa)−
∑
a>b

V (2B)(xa, xb)

− · · · −
∑

a1>a2>···>an−1

V ((n−1)B)(xa1 , xa2 , . . . , xan−1). (2)

The rapid convergence of Equation (1), demonstrated in several studies on water clusters,[2–

7] suggests that the PES associated with a system containing N water molecules can in

principle be represented as a sum of low-order interactions that are amenable to accurate

calculations using correlated electronic structure methods [e.g., coupled cluster with single,

double, and perturbative triple excitations, CCSD(T), which currently represents the gold

standard in quantum chemistry].

The theoretical modeling of many-body effects in water began in the late 1960s when self-

consistent field (SCF) calculations were carried out on small water clusters.[1, 8–13] These

studies concluded that nonadditive effects in water are generally nonnegligible, with 3B

contributions being as large as 10 – 15% of the total pair interaction for ring structures. 4B

effects were estimated to be, on average, ∼1% of the total pair interaction. The first attempt

to derive potential energy functions for water from ab initio data was made by Clementi and

co-workers who fitted dimer energies calculated at the Hartree-Fock (HF) level of theory to an

analytical representation of the 2B interactions.[14–16] Later, configuration interaction (CI)

calculations were used to derive the pairwise additive MCY potential,[17] to which 3B and

4B terms were subsequently added through a classical description of polarization effects.[18]

The first water potential including explicit 2B and 3B terms, derived respectively from 4th
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order Möller-Plesset (MP4) and HF calculations, along with a classical description of higher-

body polarization interactions, was reported in Ref. 19. Following these pioneering efforts,

the ASP potentials with a rigid monomers were derived using intermolecular perturbation

theory.[20, 21]

In the 2000s, Xantheas and co-workers introduced the TTM (Thole-type model) water

potentials, which for the first time made use of a highly accurate 1B term derived from ab

initio calculations.[22–25] The latest versions (TTM3-F[26] and TTM4-F[27]) were shown

to reproduce the properties of water clusters, liquid water, and ice reasonably well, although

some inaccuracies were identified in the calculations of vibrational spectra.[28–30]Around

the same time, 2B and 3B potentials with rigid water monomers were derived by Szalewicz

and co-workers from symmetry-adapted perturbation theory (SAPT).[31, 32] These studies

eventually led to the development of the rigid-monomer CC-pol potential, a 25-site model

with explicit 2B and 3B terms fitted to CCSD(T)-corrected MP2 dimer energies and SAPT

trimer energies, respectively, with higher-body terms being represented through classical

polarization.[33] CC-pol was shown to accurately reproduce the vibration-rotation tunneling

spectrum of the water dimer and to predict the structure of liquid water in reasonable

agreement with the experimental data. Within the CC-pol scheme, a refined 2B term with

explicit dependence on the monomer flexibility was also developed.[34, 35]

More recently, the full-dimensional WHBB[36] and MB-pol[37–39] many-body potentials

with flexible monomers were developed. WHBB includes explicit 2B and 3B terms fitted to

CCSD(T) and MP2 data, respectively, with long-range many-body effects being represented

by the same Thole-type model used in the TTM3-F potential. MB-pol was derived from fits

to CCSD(T) energies calculated for both water dimers and trimers in the complete basis set

(CBS) limit and includes many-body effects within a modified version of the polarization

model employed by the TTM4-F potential. Although WHBB has successfully been applied

to static calculations of several water properties, to date MB-pol is the only many-body

potential that has been consistently employed in quantum molecular dynamics (MD) sim-

ulations that accurately predicted the properties of water from the gas to the condensed

phase.

While the calculations with many-body potentials reported in the literature demonstrate

that Equation (1) can be effectively used to develop accurate molecular-level representa-

tions of the water interactions, the role of short- and long-range contributions at different
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orders has not been fully investigated. Here, we seek to address this issue by analyzing

water potentials that treat the leading terms of the many-body expansion through implicit

(e.g., TTM3-F and TTM4-F) and explicit (e.g., WHBB and MB-pol) representations, with

a specific focus on how these terms are defined and integrated as a function of the inter-

molecular separations. The four potentials studied here were chosen because they treat the

intramolecular distortions on equal footing, through the 1B PES developed by Partridge

and Schwenke.[40] In this way, the ability of the models to predict water properties is a

direct reflection of the treatment of the intermolecular interactions. In addition, WHBB

and MB-pol effectively share the same induction scheme employed by TTM3-F and TTM4-

F, respectively, which thus allows for a systematic investigation of the effects of explicit

low-order terms of the many-body expansion.

The dominant terms of the many-body water interactions are the 2B and 3B terms,

which can be conveniently split into short- and long-range contributions, V (2B,3B) =

V
(2B,3B)
short + V

(2B,3B)
long . At the two-body level, long-range interactions are dominated by elec-

trostatics and dispersion, while exchange-repulsion and charge-transfer become increasingly

important at short-range. 3B interactions in water, on the other hand, arise primarily

from induced interactions at long-range and exchange-repulsion when the monomer electron

densities overlap.[41] Both TTM3-F and TTM4-F include permanent and induced electro-

statics as well as dispersion and repulsion at the 2B level, while all higher order terms are

represented through many-body induction.[26, 27]

Although WHBB and MB-pol both seek to exploit the range separation of the low-order

water interactions, the two potentials are intrinsically different both in philosophy and by

construction. In WHBB, the short-range 2B term is described by a 7th-degree permutation-

ally invariant polynomial that smoothly transitions for an oxygen-oxygen separation between

6.5 and 7.5 Å into the long-range component described by the 2B TTM3-F potential. The 3B

term only includes a short-range component, which is represented by either a 5th- (WHBB5)

or a 6th-degree (WHBB6) permutationally invariant polynomial that dies off as the largest

oxygen-oxygen separation between two molecules of the trimer approaches 8.0 Å. All higher-

order interactions (n ≥ 4) are described by the polarization model employed in the TTM3-F

potential. By construction, WHBB thus employs a strict separation at the 2B and 3B levels

between short- and long-range interactions that are described in a completely independent

way and are essentially disentangled from all higher-order contributions. It should be noted
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that a simplified version of WHBB including only 1B, 2B, and 3B interactions with shorter

cutoffs was also used,[42] which, however, cannot be implemented in a straightforward way

in standard software for molecular simulations in periodic boundary conditions. For this

reason, only calculations with the full WHBB5 implementation of Ref. 36 are reported in

the following analysis.

On the other hand, MB-pol can be viewed as a classical polarizable model supplemented

by short-range 2B and 3B terms that effectively represent quantum-mechanical interactions

arising from the overlap of the monomer electron densities. Specifically, at all separations,

V (2B) includes (damped) dispersion forces derived from ab initio computed asymptotic ex-

pansions of the dispersion energy along with electrostatic contributions due to the inter-

actions between the molecular permanent and induced moments. At short-range, V (2B) is

supplemented by a 4th-degree permutationally invariant polynomial that smoothly switches

to zero as the oxygen-oxygen separation in the dimer approaches 6.5 Å. Similarly, the MB-pol

3B term, V (3B), includes a 3B polarization term at all separations, which is supplemented

by a short-range 3rd-degree permutationally invariant polynomial that effectively corrects

for the deficiencies of a purely classical representation of the 3B interactions in regions

where the electron densities of the three monomers overlap. This short-range 3B potential

is smoothly switched off once the oxygen-oxygen separation between any water molecule and

the other two water molecules of a trimer reaches a value of 4.5 Å. In MB-pol, all induced

interactions are described through many-body polarization using a slightly modified version

of TTM4-F.[37] MB-pol thus contains many-body effects at all monomer separations as well

as at all orders, in an explicit way up to the third order and in a mean-field fashion at all

higher orders. It should be noted that alternative functions to the permutationally invariant

polynomials (e.g., GAP[43]) have been suggested and successfully employed in modeling

short-range many-body interactions.[44]

The effects of the different representations of the many-body interactions employed by

TTM3-F, TTM4-F, WHBB, and MB-pol are investigated through the analysis of the en-

ergetics of water systems ranging from the gas-phase dimer to the liquid phase. Figure

1a shows a comparison of the dimer binding energies calculated for the global minimum

configuration of each PES. Although all potentials predict binding energies within ∼0.2

kcal/mol of the CCSD(T)/CBS reference value,[45] the analysis of the many-body water

interactions reported in Ref. 46 shows that the TTM3-F and TTM4-F interactions energies
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FIG. 1: Figure 1. a) Binding energies for the global minimum configuration of the water dimer (in

kcal/mol) obtained with the TTM3-F, TTM-4F, WHBB, and MB-pol potentials in comparison to

the reference CCSD(T) value from Ref. [45]. b) Binding energies (in kcal/mol) of the water hexamer

isomers relative to the binding energy of the prism isomer. Plotted are the energies calculated with

the four potentials (using the ab initio geometries) and the ab initio values from Ref. 47. c) Mean

absolute difference in the total energy between QMC and DFT with various exchange-correlation

functionals and the four analytical potentials calculated for configurations (in periodic boundary

conditions) extracted from path-integral molecular dynamics simulations of water performed with

the vdW-DF and vdW-DF2 functionals. See Ref. 48 for specific details on the QMC and DFT

calculations.

deviate significantly from the CCSD(T) reference data when dimer configurations different

from the corresponding equilibrium geometries are considered. Both WHBB and MB-pol

instead provide a highly accurate representation of the whole multidimensional dimer PES

as demonstrated by the comparisons with more than 40,000 CCSD(T)/CBS 2B energies.[37]

Due to the different treatment of many-body effects, the relative accuracy of the four

potentials is expected to become different as the number of molecules in the system of interest

increases. This is shown in Figure 1b, where the relative energies of low-lying hexamer

isomers calculated with the four potentials are compared with the corresponding ab initio

values.[47] The hexamer isomers hold a special place in the experimental and theoretical

studies of water because they are the smallest clusters in which the monomers form fully

three-dimensional structures. For this reason, the hexamer serves as a prototypical model for

the hydrogen-bond networks observed in condensed phases. While TTM3-F, WHBB, and

MB-pol (qualitatively) reproduce the isomer energy ordering, large deviations are found

between the TTM4-F predictions and the reference ab initio values. Since it was shown that

6



FIG. 2: Figure 2. Deviations from the 2-body:many-body CCSD(T):MP2 harmonic vibrational

frequencies of (H2O)n isomers with n = 2 and n = 6 calculated using TTM3-F, TTM4-F, WHBB5,

and MB-pol.

the Thole-type polarization scheme employed by the TTM4-F potential correctly captures

higher-order water interactions,[38, 46] the low accuracy shown by TTM4-F in describing

the relative energies of the hexamer isomers can be traced back to intrinsic deficiencies

in the two-body term. In this context, the performance of the TTM3-F potential, which

provides the best agreement with the reference ab initio values, is somewhat surprising given

the large deviations already seen at both the 2B and 3B levels[46] and may suggest some

fortuitous cancellation of errors. Based on this, it is interesting to note that the isomer

energies predicted by WHBB, which employs the same electrostatic model as TTM3-F,

deviate from the reference data by as much as 2.0 kcal/mol. The origin of these deviations is

difficult to determine and may result from inaccuracies in the short-range 2B and 3B WHBB

polynomials, incompatibility between the effective many-body representation encoded in the

TTM3-F electrostatic model with the short-range WHBB polynomials, or both. On the other

hand, MB-pol, which employs the TTM4-F electrostatic model, predicts isomer energies in

good agreement with the reference data, suggesting that the MB-pol short-range 2B and 3B
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terms effectively correct for the deficiencies intrinsic to the purely classical representation of

these interactions encoded in the TTM4-F electrostatic model. Similar conclusions can be

drawn from the analysis of other small water clusters, including the tetramer and pentamer

isomers, reported in the Supporting Information.

The differences between the four potentials become more evident when their accuracy is

assessed against benchmark quantum Monte Carlo (QMC) interaction energies calculated

for liquid water configurations extracted from path-integral molecular dynamics simulations

of the vdW-DF and vdW-DF2 functionals.[48] Figure 1c shows that the mean absolute

deviation (MAD defined in Equation 1 of Ref. 48) associated with WHBB is ∼4 times

larger than the corresponding values obtained with both TTM3-F and TTM4-F, and ∼15

times larger than the MB-pol value. Interestingly, MB-pol also achieves better accuracy

than all DFT models analyzed in Ref. 48. The TTM3-F and TTM4-F results indicate

that effective representations of the many-body interactions through classical polarization

models can provide a reasonable description of the liquid phase (i.e., comparable with that

provided by most of the DFT models currently used in water simulations), albeit through

empirical parameterization. On the other hand, the increased accuracy of MB-pol relative

to TTM4-F indicates that short-range many-body interactions beyond a purely classical

electrostatic representation are necessary for a correct, molecular-level description of the

liquid phase. The significantly different accuracies associated with the WHBB/TTM3-F and

MB-pol/TTM4-F potentials also suggest that the correct integration of explicit short-range

and effective long-range many-body interactions is critical for ensuring the transferability of

the potential across different phases.

The ability of TTM3-F, TTM4-F, WHBB, and MB-pol to represent the global multidi-

mensional PESs of water systems with an increasing number of molecules is directly reflected

in the accuracy with which the four potentials predict the associated vibrational frequen-

cies. Recently, accurate ab initio reference harmonic frequencies for small water clusters have

been obtained through two-body:many-body CCSD(T):MP2 calculations.[49] As shown in

Figure 2, the WHBB and MB-pol dimer PESs result in harmonic frequencies that deviate

by less than 10 cm−1 from the ab initio frequencies reported in Ref. 49. These results are

consistent with the analysis of the dimer vibration-rotation tunneling spectra of WHBB and

MB-pol, both of which exhibit nearly perfect agreement with the corresponding experimen-

tal data.[37] In contrast, relatively large deviations are seen for vibrational frequencies of
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both the TTM3-F and TTM4-F potentials. The different performance of the four potentials

in predicting the relative energies of the hexamer isomers clearly leads to different levels of

agreement with the ab initio harmonic frequencies. Independently of the isomer, the MB-pol

values consistently lie within 50 cm−1 of the reference values while the WHBB harmonic fre-

quencies can deviate, in some cases, by more than 100 cm−1. Substantially larger deviations,

up to ∼200 cm−1, are instead obtained with both TTM3-F and TTM4-F, reinforcing the

notion that purely classical representations of the many-body water interactions are likely

not sufficient to fully reproduce the complexity of the underlying multidimensional PESs.

Interestingly, all potentials predict somewhat larger deviations for the cyclic-chair isomer

of the water hexamer, supporting early observations that many-body effects in water are

relatively more important for ring structures.[13]

While the differences in the PESs clearly affect the underlying vibrational structure, as

shown in Figure 2, the infrared activity of those vibrations is ultimately dictated by the asso-

ciated dipole moment surfaces (DMSs). Many-body representations of higher-order electric

properties for molecular systems were characterized beginning in the early 1980s.[51] The

first analysis of many-body effects on the dipole moment of polar molecules was reported

by Skwara et al.[52] As noted in 1996 by Schwenke,[53] molecular dipole moments can effi-

ciently be represented in terms of geometry-dependent effective charges multiplied by their

Cartesian positions. In line with these ideas, the first representation of the 2B dipole of

water was reported as part of the WHBB suite.[36] A refined 1B + 2B DMS was used to

calculated the transition dipole moments which were then used to modulate the WHBB5

frequency distributions calculated within the local monomer approximation from config-

urations of liquid water extracted from MD simulations with the rigid E3B. Neglecting

both higher-order contributions to the dipole moments and dynamical effects (e.g., motional

narrowing), good agreement in the relative intensities was obtained with the measured IR

spectrum. Recently, a complete many-body representation of the DMS of water (MB-µ) was

reported,[54] consisting of the one-body DMS of Lodi et al.[55], an explicit two-body term,

and a slightly modified version of TTM4-F polarization for long-range two-body and all

higher-order many-body induced dipole moments. The particular functional form of MB-µ

was derived from a systematic analysis of the many-body convergence of the electrostatic

properties of water.[46]

To investigate the effects of many-body dipole moments on the IR spectrum of liquid wa-
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TABLE I: Cost per molecular dynamics step for different PESs relative to q-TIP4P/F (a non-

polarizable model with 3 point charges per molecule and Lennard-Jones interactions between

oxygen atoms). The system examined contains 256 water molecule in periodic boundary con-

ditions. Timings are presented for TTM3-F and TTM4-F, the underlying electrostatics model

used by WHBB and MB-pol, respectively. The additional cost of WHBB and MB-pol beyond their

baseline electrostatics represents the computational cost of the short-range 2B/3B polynomials.

WHBB is implemented as described in Ref. 50. All timings were performed in a modified version

of DL POLY2 using a single core of a typical Intel Xeon E5-2640 based workstation.

Model Description Cost per MD step relative to q-TIP4P/F

q-TIP4P/F Point charge 1.0x

TTM3-F 1 polarizable site/molecule 7.3x

TTM4-F 3 polarizable site/molecule 8.5x

WHBB TTM3-F electrostatics + 29,000x

empirical 2B dispersion +

2B short-range 7th-degree polynomial +

3B short-range 5th-degree polynomial

MB-pol TTM4-F electrostatics + 47x

ab initio 2B dispersion +

2B short-range 4th-degree polynomial +

3B short-range 3th-degree polynomial

ter, many-body molecular dynamics (MB-MD) simulations,[54] within the centroid molecu-

lar dynamics (CMD) formalism, were carried out with the MB-pol PES in combination with

the MB-µ DMS. As shown in Figure 3, while the overall shape of the IR spectrum is cap-

tured in the 1B + 2B representation of the DMS, 3B and higher-order contributions to the

dipole moment significantly affect the IR intensities. Two-body contributions to the DMS

lower the bend intensity while they contribute to 70% of the intensity of the OH stretch

band. Importantly, while 2B contributions are critical to appearance of the shoulder at ∼180

cm−1 corresponding to the hydrogen-bonding stretch, the 1B contributions are nonnglegi-

ble. This indicates that some rotational motion is also involved in the hydrogen-bonding

stretch. Nevertheless, the absolute intensities of the librational, bending, and stretching
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bands are only recovered when all many-body effects are included in the calculation of the

dipole moment.[30] These results support early observations based on molecular dynamics

simulations with the SPC potential supplemented with a 3B dipole-induced dipole term

showing that the calculated far infrared spectrum of liquid water was in better agreement

with experiment relative to results obtained including only a 2B description of the dipole

moment.[56]

FIG. 3: Decomposition of the IR spectrum obtained from CMD trajectories with the MB-pol PES

in terms of the many-body components of the MB-µ DMS. 1B-Dip indicates that the one-body

(gas-phase monomer) dipoles were used to calculate the dipole of the molecules sampled along the

MB-pol CMD trajectories, from which the IR spectrum was calculated. (1B+2B)-Dip indicates

that short-ranged two-body dipoles were used in addition to the one-body dipoles. MB-Dip is the

full MB-µ many-body dipole. The spectra were smoothed to facilitate the comparison between the

line shapes obtained using the different approximations.

While using a highly accurate PES is a prerequisite for a physically correct description

of the water properties at the molecular level, an appropriate balance between accuracy and

efficiency is often critical when deciding which potential to employ in computer simulations

since the computational cost directly affects the ability to calculate statistically converged

quantities. As shown in Table 1, a performance analysis carried out on a single Intel Xeon

11



E5-2640 processor for a system consisting of 256 water molecules in periodic boundary

conditions indicates that MB-pol is able to achieve a high level of accuracy at a cost of

47x that of the fixed point charge q-TIP4P/F model[57] and ∼5.5x that of the TTM4-F

potential. WHBB, on the other hand, is ∼29,000 more expensive than q-TIP4P/F.

In conclusion, the role of short- and long-range contributions to the total energy of water

systems ranging from the gas-phase dimer to the was investigated by considering four water

potentials that treat the leading terms of the many-body expansion through implicit (i.e.,

TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations.

The analysis of the energetics, vibrational frequencies, and infrared intensity indicates that

explicit short-range representations of 2B and 3B interactions along with a physically correct

integration of short- and long-range contributions are necessary for an accurate representa-

tion of the water interactions, independently of the system size. These results thus suggest

that atomistic water potentials built upon the many-body expansion of the interaction en-

ergy derived from ”first principles” hold great promise to achieve the long-sought-after goal

of describing the macroscopic properties of water across different phases from a rigorous

microscopic viewpoint. A question that remains to be addressed is the extent to which these

”first principles” many-body water potentials can be extended to the modeling of complex

aqueous solutions.
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